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ABSTRACT
Machine Learning for the recognition and analysis of prehistoric rock art and pottery is a promising 
area of research that could reveal new insights into cultural heritage and identity. Deep Learning (a 
form of Artificial Intelligence) can now be used to train powerful models to automatically recognise 
pottery and rock art images, overcoming resource constraints such as time, manpower, and lack of 
funding. This article provides a preliminary overview and proof of concept by providing Machine 
Learning approaches based on current advancements in Deep Learning to train a model to recognise 
images of pottery and prehistoric rock art. These methods can process large amounts of data quickly 
and accurately, revealing new patterns and relationships. Although ML can be a complex undertaking, 
new tools make it accessible to the archaeological practitioner who is not an AI expert.

แมีชี่ชี่ีนเล่ิร์นนิงสีำาหรับัการจดจำาแล่ะวิเค้ราะห์ศิิล่ปัะหินยุค้ก่อนปัระวัติศิาสีตร์แล่ะเค้รื�องปัั้นดินเผู้าเปั็นพื�นที�ที�มีีแนว
โน้มีขีองการวิจัยที�สีามีารถ้ำเปิัดเผู้ยขี้อมี้ล่เชี่ิงล่่กใหมี่ๆ เกี�ยวกับัมีรดกทางวัฒนธรรมีแล่ะเอกล่ักษณ์ ตอนนี�สีามีารถ้ำใชี่้
การเรียนร้้เชี่ิงล่่ก (ปััญญาปัระดิษฐ์ร้ปัแบับัหน่�ง) เพื�อฝั่ึกโมีเดล่ที�ทรงพล่ังให้จดจำาภาพศิิล่ปัะเค้รื�องปัั้นดินเผู้าแล่ะหิน
โดยอัตโนมีัติ เอาชี่นะข้ีอจำากัดด้านทรัพยากร เชี่่น เวล่า กำาล่ังค้น แล่ะการขีาดเงินทุน บัทค้วามีนี�แสีดงภาพรวมีเบัื�อง
ต้นแล่ะการพิสี้จน์แนวค้ิดโดยให้แนวทางการเรียนร้้ขีองเค้รื�องตามีค้วามีก้าวหน้าในปััจจุบัันขีองการเรียนร้้เชี่ิงล่่กเพื�อฝั่ึก
โมีเดล่ให้จดจำาภาพขีองเค้รื�องปัั้นดินเผู้าแล่ะศิิล่ปัะบันหินยุค้ก่อนปัระวัติศิาสีตร์ วิธีการเหล่่านี�สีามีารถ้ำปัระมีวล่ผู้ล่ขี้อมี้ล่
จำานวนมีากได้อย่างรวดเร็วแล่ะแมี่นยำา เผู้ยให้เห็นร้ปัแบับัแล่ะค้วามีสีัมีพันธ์ใหมี่ๆ แมี้ว่า ML จะเปั็นงานที�ซัึ่บัซึ่้อน แต่
เค้รื�องมีือใหมี่ๆ ทำาให้ผู้้้ปัฏบิััติงานทางโบัราณค้ดีที�ไมี่ใชี่่ผู้้้เชี่ี�ยวชี่าญด้าน AI สีามีารถ้ำเขี้าถ้ำง่ได้
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INTRODUCTION 
The significance of rock art is recognised worldwide (Whitley 2016). However, a lack of resources 
often hampers the discovery and exploration of this unique kind of cultural heritage. Manually 
identifying rock art and analysing it can be a time-consuming and expensive endeavour. Automation 
of this process would allow larger-scale analysis, enabling this study to be extended to locations where 
there has been little previous research.  Similar issues exist in the analysis of ceramics. In the last 
few years, advances in Machine Learning (ML), a subfield of Artificial Intelligence (AI), have begun 
to be applied to the study of ancient ceramics and rock art. Currently, much of this research is in the 
‘proof of concept’ stage;  nevertheless, it shows promise, particularly in the area of image classification 
(Pawlowicz et al. 2017; Prasomphan and Jung 2017; Tsigkas et al. 2020; Bickler 2021). In recent years, 
ML-based algorithms have been used to identify and extract unique qualities from a wide range of 
creative and cultural assets, including rock art. However, studies that report on such research assume 
familiarity with advanced data science and ML algorithms, making it difficult for archaeologists to 
learn and use these techniques.

Ban Non Wat (BNW) and Khao Chan Ngam (KCN), both of which are located on the Khorat Plateau 
in Thailand, are home to impressive collections of ceramics and rock art, although much of the data 
regarding these sites remain relatively unexamined. This paper discusses the application of deep 
learning techniques (DLs) using Convolutional Neural Networks (CNNs) to analyse ceramics and rock 
art image datasets from the Khorat Plateau and shows the effectiveness of these methods. 
Three primary contributions are made in this paper:

• We outline the process needed to perform classification of images from two different sites 
containing very different types of material culture (rock art and ceramics) using DL

• We provide details regarding our use of lower code frameworks for image classification and 
a discussion of the benefits and difficulties associated with such solutions for archaeologists 
and other researchers who do not have access to data science and machine learning specialists.

• And finally, we provide a discussion of some of the implications surrounding the use of ML 
for image analysis and the limitations of methods using open-source and commercially hosted 
ML options.

This paper first presents a background on the topic of DL and how this may be used in archaeological 
research. Next, we describe the methods we use to perform image classification using CNNs. We 
propose a method of using transfer learning (TL), which makes use of a model previously trained on a 
very large image dataset (which is not made up of archaeological data) to analyse two image datasets. 
We then turn to a discussion of the implications of using DL; both from a general ML standpoint and 
from the perspective of archaeology. Finally, we discuss our conclusions and recommendations for 
future work.
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BACKGROUND
Machine Learning and Deep Learning Application in archaeology
ML seeks to answer the question of how to build machines with the capacity to learn independently 
(Jordan and Mitchell 2015). Computer models are digital representations of the physical world. A 
weather model may calculate how likely it is to rain given a particular set of parameters (called features). 
After the model has been trained by ingesting a large number of examples of previous outcomes, it 
is capable of responding with a prediction of how likely a particular outcome is to occur. Over time, 
the model is capable of ‘learning’, that is, making a more accurate prediction of the outcome is likely 
to occur as it collects more example data. Models are essentially a collection of simple calculations 
(addition, multiplication, and logarithmic functions) that are executed at great speed.

Deep Learning (DL) is a sub-field of ML and is concerned with creating “neural networks” that mimic 
the structure of networks of individual human brain cells. The concept of neural nets has been around 
since 1960 (Widrow and Lehr 1990), but only recently have advances in processing and computing 
power made them practical. Researchers have developed complex networks with many layers of neural 
nets that can execute formulas with hundreds of thousands of parameters. They are run on systems with 
graphic processing units (GPUs) or tensor processing units (a tensor is a type of mathematical vector) 
to allow these calculations to be executed extremely quickly. DL models are capable of analysing text 
to look for patterns of words, images of elements in a photo, or sounds such as the human voice. Many 
businesses are using some type of DL in their customer interactions (Davenport and Mittal 2023).

Convolutional Neural Networks (CNNs) are a type of layered artificial neural network used for image 
and video recognition tasks and are the engine that powers image classification. They are designed 
to process and analyse data with grid-like structures, such as images, videos, and audio signals. The 
convolutional layers are responsible for learning and detecting local patterns and features in the input 
data, while the pooling layers reduce the spatial dimensions of the data while preserving important 
information. The fully connected layers are used to make the final prediction or classification. The key 
advantage of CNNs is their ability to automatically learn hierarchical representations of the input data, 
without the need for manual feature engineering. They can also be trained on large amounts of labelled 
data, which allows them to learn and generalise well to new, unseen data. CNNs have been successfully 
applied in a variety of computer vision tasks, including object recognition, image classification, and 
semantic segmentation, among others (El Naqa and Murphy 2015). 

There is great promise in applying AI techniques to the study of rock art. However, in the archaeological 
domain, visual item categorisation, one of an archaeologist’s primary techniques, has been mostly 
unassisted by technology. Although visual inspection is traditionally used to classify artefacts, ML 
techniques can be used to construct tools to assist in this task (Maaten et al. 2007). Literature describing 
the application of ML to painted rock art analysis is limited; however, there have been a few notable 
publications in this area, such as Purshotam’s (2015) master’s thesis on automatic indexing of South 
African rock art images, Kowlessar et. al.’s (2021) model that identifies a stylistic chronology from 
learned features, and Jalandoni et al.’s (2022) article on the use of ML methods in rock art research and 
their application to automatic painted rock art identification.
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Stages of the ML workflow
The stages involved in using ML for artefact classification are summarised in Table 1 below. These 
activities as they relate to CV and image analysis will be discussed in more detail in the methods 
section.

Stage Activities
0 Data collection Collect a representative and diverse dataset of artefact images or other 

relevant information for training and testing the ML model.
1 Data pre-processing Clean and pre-process the data to remove errors, missing values, or 

inconsistencies and ensure that the data are in a suitable format for ML.
2 Feature extraction Extract meaningful features from the data that are relevant to artefact 

classification. This can include information such as the shape, size, 
colour, texture, and other characteristics of the artefacts.

3 Model selection Choose a suitable ML algorithm for artefact classification. This may 
involve testing different algorithms and comparing their performance 
on the data.

4 Training and validation Train the ML model on the data using a suitable training set and validate 
its performance on a separate validation set.

5 Model evaluation Evaluate the performance of the trained model using appropriate 
metrics, such as accuracy, precision, and recall and identify any areas 
for improvement.

6 Model deployment* Deploy the trained model for real-world artefact classification tasks, 
and use it to make predictions about new, unseen artefact data.

7 Model refinement* Continuously evaluate and refine the model as new data become 
available, and retrain the model as needed to improve its performance.

Table 1 Stages in the ML workflow. *These stages are beyond the scope of the report of this paper.

The details and implementation of these stages may vary depending on the nature of the artefact data, 
the complexity of the classification task, and the availability of relevant resources and tools. Of these 
stages, data pre-processing requires the bulk of time needed to make data usable by an automated 
model, and so we turn our attention next to a discussion of the steps involved in this process. 

Data pre-processing
Pre-processing as applied to ML is the action of ensuring that the data are in a suitable format and 
condition to be used by a model. Regardless of the domain where ML is used, pre-processing consumes 
most of the time required to use ML. A standard rule of thumb is that 80% of the time for a ML project 
will be consumed by data pre-processing (Frye et al. 2021). The next two sections are concerned with 
the steps in the pre-processing stage and their importance to the archaeological process and then a 
discussion of the similarities and differences between data pre-processing and Principal Component 
Analysis.

Pre-processing image data for use in ML
Data pre-processing consists of preparing and transforming raw data into a format that can be used as 
input to ML algorithms. This stage is particularly important when the data is obtained from different 
sources such as different sites or different orientation of the camera angle to the artefact in the image. It 
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involves tasks such as cleaning and transforming data, handling missing values, and normalising data. 
Processing archaeological data is a time-consuming task that often falls to graduate students or entry-
level employees. Data pre-processing is not the most glamorous work, but it is essential to ensure that 
the data are accurate and usable by the ML algorithm. The risk is that if processing data is seen as a 
low-priority task, it may be rushed or done incorrectly. 
The steps in data pre-processing include:

• Data cleaning: Identify and remove any errors or inconsistencies in the data. Actions: detect 
and remove images that are too dissimilar, handle missing values such as no labels, and deal 
with duplicate data.

• Data Transformation: Convert data to a suitable format for ML algorithms. This process can 
include converting text data into numerical data or transforming images into arrays of pixel 
values suitable for the ML model.

• Data normalization: Adjusting the data to ensure that it is on the same scale and has the same 
distribution. Datasets with unequal distribution are skewed and may produce inaccurate 
predictions. Add or remove data as needed (i.e., choose more images of a certain type). ML 
models assume that data are suitably scaled and are proportional. 

• Data augmentation: Add copies of the data that are modified such as tilted in angle, flipped, 
mirrored, zoomed, cropped, etc. For the best accuracy, DL requires large datasets with many 
examples. Many DL frameworks provide methods to automate this process. Overfitting occurs 
when a model learns the detail and noise in the training data to such an extent that it has a 
negative impact on the model’s performance when applied to new data.

• 
Image Classification Methods
This section describes the image categorisation approach we propose for ceramics and rock art. The 
study area where the data was collected will be first presented, followed by the DL models utilised. For 
various DL models, images are often scaled to a lower resolution to reduce the number of parameters to 
be learnt. We apply a DL approach using transfer learning (TL) with a model that had been previously 
trained on a large set of non-archaeological images. The following are details about the setup for 
the two experiments and what methods were followed to execute the machine learning code. We 
include a description of a free development environment, Google Colab, which we used to conduct the 
experiments, as well as input data dimensions. Lastly, we discuss performance evaluation measures 
and the generalisability of the models. 

Study areas
The Khorat Plateau (ที�ราบัสี้งโค้ราชี่) takes its name from the local dialect of Nakhon Ratchasima Province 
and is located in northeastern Thailand incorporating a number of provinces, including parts of Nakhon 
Ratchasima, Buriram, and Maha Sarakham (Figure 1). The plateau is surrounded by uplands and is 
characterized by fertile soil, abundant water resources, and a dry- tropical climate. Two basins are 
separated from the plateau by the Phu Phan Mountains: the northern Sakhon Nakhon Basin and the 
southern Khorat Basin. The region is drained by several rivers, including the Mun and Chi rivers, 
which flow into the Mekong River forming the region’s northeastern boundary. The geography of 
the Khorat Plateau has played a significant role in shaping its cultural and economic development, 
historically making it a barrier that controlled access to the region. This made it an important center 
for agriculture, trade, and transportation in the region. Historically, this made the plateau difficult 
to access. After the Post-Angkor period (Keyes 1976) and a protracted series of droughts between 
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the 13th and 15th centuries, the plateau appears to have been mostly depopulated. The Khorat Plateau 
in Northeast Thailand has significant archaeological importance due to its rich cultural heritage and 
abundant ancient remains. The plateau has been occupied by various civilizations and cultures over 
the centuries and has played an important role in the development of the region. Archaeological sites 
on the plateau, such as Ban Chiang and BNW, reveal early examples of rice cultivation, metalworking, 
and advanced social organisation. The Khorat Plateau is therefore considered a crucial area for the 
study of Southeast Asian prehistory and the development of early civilizations in the region. Keyes 
(1974: 504) explains:

“… to acquire a fuller and more accurate picture of the society and culture of the early 
urban life on the Khorat Plateau, much more archaeological investigation must be 
conducted. And, I would add, we can gain a deeper knowledge of these civilisations 
by undertaking rigorous research on a number of the Thai-Lao people of north-east 
Thailand’s indigenous myths.” 

Forty years later Higham (2014) adds, “...we remain essentially ignorant of the linkages between sites 
and the presence or absence of states on the Khorat plateau”. The plateau is considered a crucial area 
for the study of Southeast Asian prehistory and the development of early civilizations in the region, 
with artefacts found there providing important insights into the lifestyles, beliefs, and technological 
advancements of the civilizations that inhabited the area. Elaborating on this Higham and Kim 
(2022: 592) suggest that “sociocultural complexity during the local Iron Age was multidimensional 
and multilinear… [however] complex polities- early state analogues are still out of focus in the 
archaeological record”. Despite a wealth of archaeological evidence, much remains unknown about 
the society and culture of early urban life on the Khorat Plateau, and more research is needed to gain 
a deeper understanding of these civilizations. The datasets used for the DL analysis reported in this 
paper come from two sites in the Khorat Plateau: BNW and KCN. Background information regarding 
these two sites is provided next.

Fig. 1 Map of Thailand showcasing the Khorat Plateau and the locations of the study sites (after Google Earth Pro 
2023).
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Ban Non Wat
BNW is an archaeological site located in northeastern Thailand on the Khorat Plateau. It is a Thai 
town in the Non-Sung district of Nakhon Ratchasima province, close      to the small city of Phimai. 
The region was occupied during the Neolithic, Bronze, and Iron Ages, according to archaeological 
evidence, and provides insights into the development of early civilisations in Southeast Asia (Harris 
and Tayles 2012). It has been the subject of excavations since 2002, revealing a cultural sequence that 
spans 11 prehistoric periods and 640 burials (Higham 2011). BNW is particularly significant, as it is 
believed to have been a key centre of early bronze production and trade. The first Neolithic settlement 
in BNW occurred in the 17th century BCE, whereas the Bronze Age began in the late 11th century 
BCE. The transition to the Iron Age occurred around 420 BC (Higham 2011). Seventy-six radiocarbon 
readings and Bayesian computations have refined the exclusiveness of this sequence (Higham 2011; 
Higham and Higham 2009). Bayesian analysis is the application of Bayesian statistical interpretation 
of probability to radiocarbon dating to obtain a more exact date (Otárola-Castillo and Torquato 2018). 

Khao Chan Ngam
KCN is located 45 kilometres from the provincial capital of the Nakhon Ratchasima Sikhio district 
and is connected to Ban Loet Sawat. KCN is situated within a large collection of sandstone ridges that 
provide a natural rock shelter at the base of the Petchabun mountain range. According to Khanthakan 
(1979) and Tan (2014), the sandstone shelter is the largest in the region. The monks who constructed 
Wat KCN in 1968 allow access to KCN through the forest temple. KCN is notable for its prehistoric 
paintings of humans and animals. There are two parallel, north-south oriented sandstone massifs at this 
location. On the side walls of the caves are pictures of people (men, women, and children) indulging 
in various activities, such as sitting, dancing, standing with a dog, and firing arrows with bows, which 
portray daily life between approximately 4,000 and 2,500 BP (Tan 2014).

Development environment and frameworks used
We selected Google Colab and Jupyter notebooks to conduct our machine learning experiments. 
Jupyter notebooks are self-contained files capable of executing complex scripts written in programming 
languages such as Python, R, and Scala. Google Colab is a free cloud service that enables the execution 
of Jupyter notebook code and provides Google Drive storage access. The combination of these two 
free tools allows researchers to conduct ML and DL experiments without installing costly software. 
Colab also offers access to advanced computer resources, such as graphics processing units (GPUs) 
and tensor processing units (TPUs), which are required to execute the complex calculations required 
by ML/DL quickly. For our experiments, we used PyTorch, an open-source ML library. It offers a 
comprehensive platform for building and training machine learning models, as for well as executing 
existing models. To reduce development time, we also used Fast.AI, a wrapper library that sits on top 
of PyTorch and simplifies the creation of ML and DL models.

Experimental workflow
To replicate the most common scenario for dataset acquisition, we chose to use two disparate 
archaeological image collections for our experiments. The ceramics dataset consisted of 450 
photographs with easily identified ceramics (in other words, one pot per image) from the site of BNW. 
The dataset of rock art images consisted of 165 photographs with easily identified rock art from the site 
of KCN with one motif present in each image. Our goal was to use ML/DL to do binary classification 
on each image. 
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Data pre-processing
Because our datasets contained relatively few images, we expanded the datasets by performing 
data augmentation on the images. All images were resized to 224 x 224 pixels x 3 colour channels.  
Additionally, Fast.AI was used to automate image duplication to expand our datasets using image flips, 
image rotations, image squish, random resized crops, and padding the image images with zeros. For 
accuracy DL algorithms require many images to train on to “teach” the model how to generalise from 
training images which are labelled, to test images which are not.

Feature extraction 
Feature extraction is the transformation of raw data into numerical features that may be handled while 
maintaining the integrity of the original data set. It yields better results than applying ML directly to raw 
data. ML on images is effective because features may be used to compare photographs and correlate 
with another (owing to similarity) or with a specific label. People can easily recognise a vehicle or a 
tree in an image. Even if you have never seen a particular tree or automobile before, you can accurately 
associate it with the relevant thing or compare it to other objects in your memory that are comparable. 
In the case of an automobile, the presence of wheels, doors, a steering wheel, etc., distinguishes a fresh 
instance from others. It occurs because you sense forms and elements outside the image itself; hence, 
you can distinguish a unique tree or car if it exhibits particular traits. Google’s “I am not a robot” 
CAPTCHA method is an example of feature extraction in practice. Benefits of ML include improved 
accuracy, efficiency, scalability, and the ability to automatically learn and improve from experience 
without being explicitly programmed; and the ability to deal with increased complexity as more data 
are used. 

Model selection: 
This case study employs two types of machine learning: Supervised, using Fast.ai and TL, using 
PyTorch. Both models used the RESNET18 Architecture and were compared for accuracy, speed, and 
ease of use. When using DL with a small number of examples models can overfit. A solution is to use 
a model that has been pre-trained on thousands of images. 

Training and validation 
Train-test split is a technique used in ML to evaluate the performance of a model. It involves dividing 
the original dataset into two parts: a training set and a testing set. The training set is used to train 
the model, and the model is fit to the data in this set. The testing set is then used to evaluate the 
performance of the model, by providing it with input data and comparing its predictions with the 
actual target values. The objective is to estimate the model’s performance on new, unseen data. This 
study used an 80:20 ratio for each dataset (with 132 rock art images for training: 33 rock art images 
for testing and with 350 ceramics images for training: 150 ceramic images for testing). The split was 
done randomly to ensure that no bias was introduced into the results. The train-test split is an important 
technique for evaluating the performance of machine learning models, as it allows us to estimate how 
well the model will perform on new data. 

For these experiments binary manual labelling was used. Manual labelling is the most accurate method, 
but it can be time-consuming and expensive. For the binary classification in this study, the goal is 
to predict one of two possible outcomes for a given input, ‘figurative/non-figurative’, or ‘restricted/
unrestricted’. Binary classification problems can be solved relatively quickly and this can be useful for 
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gaining a preliminary understanding of the problem and testing different approaches to the problem. 
Binary classification problems often require smaller datasets, making it easier to train models and 
perform experiments with limited computational resources. As this study includes two separate image 
classification notebooks, each data set was divided into ‘figurative’ and ‘non-figurative’ for rock art 
and ‘restricted’ and ‘unrestricted’ for ceramics.

Results
In ML, the number of epochs used during training can impact the results of the model. Epochs define 
the number of times the model will see and learn from the training data. Generally, increasing the 
number of epochs will result in a more accurate model as the model has had more opportunities to learn 
from the data. However, increasing the number of epochs will also result in a longer training time. 

Ban Non Wat Ceramics
Ceramics images from the BNW archaeological site were utilised to construct both a Supervised, or 
labelled, code and Transfer Learning code to train a model. This model was based on Cameron (2013) in 
which she devised a typology for a sample of reconstructed Bronze Age and Iron Age burial containers. 
In conjunction with seriation, Cameron’s (2013) typology revealed significant variations in ceramic 
traditions from the beginning of the Bronze Age 2 (about 1250 BC) and the beginning of the Bronze 
Age 5 (approximately 1000 BC) (c. 690 BC). The initial typology consists of two broad categories: 
restricted (Figure 3a) and unrestricted (Figure 3b), with an additional 16 unique subclassifications that 
represented whether the degree to which a vessel was restricted or unrestricted. This is most evident in 
the ceramic’ necks were open. However, for the initial image detection, the coding for this model was 
condensed into binary categories: restricted and unrestricted. 

Fig. 3a: example of restricted ceramic 
(Chang, 2019)

Fig. 3b: example of unrestricted ceramic (Chang, 2019)
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Fast.ai
Table 2 shows the results for the ceramic Fast.ai training process. Each row represents the results for 
a single epoch, or iteration, of the training process. This model used 4 epoch iterations and total time 
it took for this process can be estimated based on the time column in the table. For each epoch, the 
time taken to run the model is specified in the format “hh:mm:ss”. Based on the time column, each 
epoch took approximately 1 minute and 43 seconds to run, so the total time for the four epochs was 
approximately 6 minutes and 52 seconds. Additionally, the results indicate that the train_loss and 
valid_loss decrease as the number of epochs increases, indicating that the model is becoming more 
accurate and better able to fit the data. Additionally, the error_rate decreases as the number of epochs 
increases, which is a further indication of the model’s improved accuracy. 

epoch train_loss valid_loss error_rate time
0 1.312665 1.415879 0.466667 01:43

epoch train_loss valid_loss error_rate time
0 0.929468 0.747595 0.355556 01:46
1 0.847627 0.362395 0.177778 01:43
2 0.652359 0.318893 0.155556 01:46
3 0.543068 0.311377 0.155556 01:43

Table 2 Fast.ai metrics error rate showing a decrease in inaccurate predictions.

Based on the findings (Table 2; Figure 4), it is evident that this code was successful. The systems were 
using the most basic classification of restricted vs unrestricted without the subsections in Cameron’s 
typology with an approximate accuracy of 75%. When evaluating any of these systems, it is essential to 
keep in mind the expectations regarding the algorithm’s level of accuracy.  The definition of ‘sufficient 
precision’ in ML is highly subjective, with industry standards recommending a range of 70 to 90%. 
A confusion matrix is a mechanism for summarising the effectiveness of a classification system. If 
the dataset is balanced and you are using two classes, then classification accuracy should be reliable. 
By calculating a confusion matrix, you could gain a better understanding of what your classification 
model does right and what kinds of errors it makes. The confusion matrix (Figure 6) has rows for each 
‘restricted’ and ‘unrestricted’ ceramic in the dataset. In general, the classifier does not produce many 
errors, and the data is only slightly overfitted.

Fig. 4  ML results for the Fast.ai categorisation 
of BNW ceramics with ‘X’ indicating an inaccurate 
prediction.

Fig. 5 Results for the Fast.ai BNW confusion matrix.
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Transfer Learning
This approach trains a convolutional neural network for image classification using transfer learning. 
The model underwent two training and validation iterations, in which the model is being trained for 
25 epochs (iterations) in each. For each epoch, the performance is evaluated on two sets of data: a 
training set and a test set. The “Loss” and “Acc” values represent the model’s loss (error) and accuracy 
respectively.

Epoch 22/24
----------
TRAIN Loss: 0.2960 Acc: 0.8811
TEST Loss: 0.8324 Acc: 0.6906

Epoch 23/24
----------
TRAIN Loss: 0.2246 Acc: 0.9251
TEST Loss: 0.8086 Acc: 0.7130

Epoch 24/24
----------
TRAIN Loss: 0.2285 Acc: 0.8811
TEST Loss: 0.9239 Acc: 0.6726

Epoch 22/24
----------
TRAIN Loss: 0.3796 Acc: 0.8370
TEST Loss: 0.7086 Acc: 0.6816

Epoch 23/24
----------
TRAIN Loss: 0.4154 Acc: 0.7885
TEST Loss: 0.7551 Acc: 0.6592

Epoch 24/24
----------
TRAIN Loss: 0.3450 Acc: 0.8590
TEST Loss: 0.7541 Acc: 0.6547

Table 3 Sample of Transfer Learning metrics error 
rate for Training and Validation 1.

Table 4 Sample of Transfer Learning metrics error rate for 
Training and Validation 2.

The loss values in Table 3 show that the model’s training accuracy improves over the course of training, 
but its test accuracy fluctuates. In this case, the model seems to be improving during the first few epochs, 
with a decrease in loss and an increase in accuracy on both the training and test datasets. However, the 
performance plateaus after a few epochs and starts to fluctuate.  The model appears to reach a maximum 
test accuracy of around 71% in the final epoch. This first training and validation took approximately 
1 hour 12 minutes 18 seconds. The results in Table 4 for Training and Validation 2 indicate that the 
model’s training loss decreases and accuracy increases over time, reaching a maximum accuracy of 
86.78% on the 15th epoch. Training loss and accuracy are improving with each epoch; however, test 
loss and accuracy oscillate at times. This is a common occurrence known as overfitting, where the 
model is performing well on the training data, but not generalising well to new data. The aim is to find 
a model that has a good balance between training performance and test performance. Additionally, the 
accuracy varies between different epochs, suggesting that the model may not be fully converging. The 
average runtime for Training and Validation two was 1 hour, 9 minutes and 56 seconds.

Khao Chan Ngam rock art
Analysis of rock art often involves attempting to identify the subject matter and interpreting the meaning 
behind the images. Photographs from Khao Chan were utilised to construct a Supervised code and a 
Transfer Learning code to train a model. This dataset of rock art images were based on an iconographic 
classification and were divided into two categories: Figurative (Figure 4a) and Non-Figurative (Figure 
4b). Figurative rock art refers to images that depict recognisable objects, people, animals, or symbols. 
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Non-figurative rock art, on the other hand, consists of abstract designs or patterns that do not represent 
anything specific. One characteristic of this dataset is its skewness, as the rock art motifs at KCN are 
primarily figurative. 

Fig. 4a Example of Figurative rock art (Tan, 2014). Fig. 4b Example of Non Figurative rock art (Tan, 2014).

Fast.ai
Table 5 shows the results of the rock art Fast.ai training process. Like the Ceramics data, each row 
represents the results for a single epoch, or iteration, of the training process. Again, this model used 4 
epoch iterations and total time it took for this process can be estimated based on the time column in 
the table. The total time for this process is approximately total of 00:29 seconds to train over the given 
epochs. Based on Table 5, the model improved in terms of both “train_loss” and “valid_loss” over the 
course of training and had a low error rate of 0.045455 in the validation dataset after each epoch.

epoch train_loss valid_loss error_rate time
0 1.247491 0.261175 0.045455 00:09

epoch train_loss valid_loss error_rate time
0 1.297137 0.199935 0.045455 00:06
1 1.248356 0.163435 0.045455 00:04
2 1.262464 0.180043 0.045455 00:04
3 1.131350 0.233866 0.090909 00:06

Table 5 Fast.ai metrics error rate.

The “error rate” column in the table represents the percentage of incorrect predictions made by the 
model. In Table 5, the error rate ranges from 4.55% to 9.09%. Therefore, the model had an accuracy 
of around 95.45%, which means that it correctly predicted the outcomes for approximately 95.45% of 
the data it was evaluated on. However, as shown, there are photographs that have been misinterpreted 
(Figure 5). Ordinarily, it is difficult to determine why an algorithm identifies photos as belonging to 
a particular category; interestingly, the two of the figurative images used were sitting, indicating that 
the system lacked sufficient training on those specific image types. Due to the few samples (images) 
in the dataset, the confusion matrix indicates that the model was unable to generalise knowledge to 
accurately predict rock art motifs (Figure 6).
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Fig. 5 ML results for Fast.ai categorization of KCN rock art. Fig. 6 Results for the Fast.ai KCN confusion matrix.

Transfer Learning
This model underwent two training and validation iterations in which the model was trained for 25 
epochs on each. For each epoch, the performance is evaluated on two sets of data: a training set and 
a test set. The Training and Validation 1 results models train loss decreases over time and the train 
accuracy increases over time, indicating that the model is learning and improving on the training 
data. The test accuracy fluctuates but generally remains above 90%, with the best accuracy being 
96.22% indicating that the model has a high level of accuracy. This first training and validation took 
approximately 2 minutes and 37 seconds.

Epoch 22/24
----------
TRAIN Loss: 0.3885 Acc: 0.8326
TEST Loss: 0.6044 Acc: 0.7399

Epoch 23/24
----------
TRAIN Loss: 0.3623 Acc: 0.8458
TEST Loss: 0.6621 Acc: 0.7220

Epoch 24/24
----------
TRAIN Loss: 0.3893 Acc: 0.8018
TEST Loss: 0.6541 Acc: 0.7085

Epoch 22/24
----------
Train Loss: 0.0635 Acc: 0.9821
Test Loss: 0.1178 Acc: 0.9434

Epoch 23/24
----------
Train Loss: 0.1592 Acc: 0.9732
Test Loss: 0.1284 Acc: 0.9434

Epoch 24/24
----------
Train Loss: 0.0469 Acc: 0.9911
Test Loss: 0.1168 Acc: 0.9434

Table 6 Sample of Transfer Learning metrics error rate 
for Training and Validation 1.

Table 7 Sample of Transfer Learning metrics error rate 
for Training and Validation 2.
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Table 7 results indicate that the train loss decreases, and the train accuracy increases over the 24 
epochs. Training loss and accuracy metrics are improving throughout the epochs, reaching a minimum 
of 0.0469 for the training loss and 1.0 for the training accuracy in epoch 16. In contrast, the test loss 
and accuracy metrics are fluctuating, reaching a maximum test accuracy of 0.9811 in epoch 5 and 
a minimum of 0.8491 in epoch 3. The test loss also decreases and the test accuracy increases, but 
the model may have overfitted to the training data as the gap between train and test performance 
increases as the number of epochs increases. It is important to note that a model with high accuracy 
on the training dataset does not always translate to high accuracy on the test dataset, as it might be 
overfitting to the training data. The overall accuracy of this model can be estimated to be 94.34% with 
an approximate run time of 2 minutes and 49 seconds. 

DISCUSSION
ML and archaeology
This paper has provided results of two experiments using small collections of images of ceramics 
and rock art from the Khorat Plateau. Each dataset was trained and tested using the same algorithm 
(ResNet18) and following a supervised learning and transfer learning process. These experiments have 
demonstrated the following.

• That the small number of example images in a dataset can be problematic when using DL, 
however this limitation can be overcome by either using automated data augmentation to 
increase the number of example images or by using a model trained on thousands of images 
that are unrelated to archaeology.

• Demonstrated options for using lower code tools such as Jupyter notebooks, Google Colab and 
ML frameworks such as Fast.ai and PyTorch

• Demonstrated that existing code for doing CNN and TL is easily generalisable to disparate 
datasets of archaeological images without extensive revisions.

• Shown that some of the tedious work of classifying images into broad categories can be 
automated, leaving time for other explorations.

ML has the potential to revolutionise the field of archaeology by providing new tools and methods for 
analysing and processing large and complex data sets. This can improve both intersite and intrasite 
analysis by finding patterns and relationships in data that traditional methods cannot. Clustering 
algorithms can group sites and artefacts based on similarities, and decision tree models can predict 
cultural affiliations and the function of features. Ways ML has the potential to improve the speed and 
accuracy of archaeological research and help preserve cultural heritage include:
Data analysis: ML algorithms can be used to analyse large datasets of archaeological information, such 
as artefact and site data, and identify patterns and relationships that would be difficult to detect using 
traditional methods. For example, clustering algorithms can be used to group sites based on similarities 
in their artefact assemblages, while decision tree models can be used to predict the function of a feature 
within a site based on its location and other characteristics.

• Predictive modelling: ML algorithms can be used to make predictions about archaeological 
sites and artefacts, such as their cultural affiliation, age, or function. For example, decision tree 
models can be used to predict the cultural affiliation of a site based on its location and other 
characteristics, while neural networks can be used to predict the age of an artefact based on its 
physical characteristics.
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• Cultural Heritage Management: ML can be used to support heritage management and 
preservation by identifying threats, predicting the impact of climate change, and monitoring 
the condition of cultural heritage sites.

• Artefact classification: ML can be used to classify and categorise artefacts, allowing more 
efficient and accurate cataloguing and management of archaeological collections.

• Image and signal processing: ML algorithms can be used to process and analyse images and 
signals from remote sensing and other imaging technologies, such as LiDAR and GPR. For 
example, convolutional neural networks can be used to detect and classify archaeological 
features in drone or satellite images, while signal processing algorithms can be used to analyse 
GPR data to identify subsurface features.

• Data visualisation: ML algorithms can be used to create visualisations of archaeological data, 
making it easier to understand and communicate complex relationships and patterns. For 
example, dimensionality reduction algorithms can be used to create 2D or 3D visualisations 
of artefact and site data, while clustering algorithms can be used to visualise patterns and 
relationships in the data.

General implications
Limitations of Google Colab 
Google Colab offers the opportunity to create Jupyter Notebooks to run ML code on the fly; however, it 
is not without issues. Access to Google storage for the data is a benefit, although since the storage and 
notebook capabilities are not hosted in the same area, connecting to said data can be an issue. Colab 
provides access to common ML libraries which can be loaded into the environment, but uploading 
of user-generated libraries is limited. On the free version of Colab, GPU and TPU processing may 
be limited due to traffic on the site, and disconnections to the compute services can be frequent, 
especially if the user has stepped away for a short time. Data uploads to the Colab environment are 
not permanent, and connections disappear after the session ends, which can lead to confusion as to 
where the data are stored. Uploading large datasets to Google Drive can be slow and prone to dropout. 
The Colab platform stores files on Google Drive with 15GB of free capacity; however, dealing with 
larger datasets requires more space, which makes execution challenging. Google Colab sessions allow 
customers to connect to the service for up to 12 hours a day. To work for a longer period, customers 
can use the commercial version, Colab Pro, which allows programmers to remain online for 24 hours. 
Upgrading to the paid version of the service can ameliorate many of these concerns.

Commercial Options
Due to the complexity of the calculations needed, computer scientists and mathematicians have primarily 
led the advancement of ML and DL. The three major cloud-provision tech companies (Microsoft, 
Google, and AWS) have made the move to develop cloud-based ML tools that aid businesses to 
leverage AI. AWS is the most developed of the three, having been in the market for the longest time, 
however it is also the most expensive. Their pricing structure is complex, but extremely fine-grained, 
allowing the customer to purchase only the minimal amount of computing power needed to complete 
the task. Many of these commercial services offer resources as well as access to pre-trained models 
and Jupyter notebooks with prewritten code that can be easily modified to suit the required processing 
task. A free tier of services is available for one year, although users may create new accounts as needed 
to extend this access.
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CONCLUSION
Currently, ML is heavily dependent on large amounts of data to be effective. For DL models to 
generalise and thus provide correct predictions for image classification, thousands of examples are 
needed. This can be a problem for researchers that do not have access to large data sets or data that 
are well labelled. In addition, ML algorithms can be complex to implement in code and often require 
a high level of programming knowledge. This can be a barrier for researchers who do not have the 
resources to invest in training. Furthermore, ML is often not able to provide accurate results in cases 
where the data is very noisy or unbalanced. This can be a problem in many real-world applications, 
such as medical diagnosis or fraud detection. 

However, modern development tools are starting to flatten the learning curve necessary to do basic 
ML such as image classification. Although computer vision has existed since the 1960s, hardware 
requirements and computational knowledge have always made it highly complex and difficult to 
implement. This project suggests that archaeologists with limited resources have access to lower-code 
image analysis choices. Some platforms, such as Google and AWS, have begun to develop software for 
this purpose. The development of automated solutions for the identification of rock art and ceramics 
that extends beyond the simple binary classifications are now available. The experiments in this study 
have used labelled data and CNN to predict categories as well a pre-trained model with no labelling 
and using feature extraction, by using representations learnt by a prior network to extract relevant 
features from incoming data. In the instance of KCN, stylistic variance may indicate intersite and 
intrasite identification, as well as regional cultural links.
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